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CHARACTERIZATIONS OF BI-HYPERIDEALS AND PRIME

BI-HYPERIDEALS IN ORDERED KRASNER HYPERRINGS

SABER OMIDI1, BIJAN DAVVAZ1

Abstract. In this paper, we introduce the concepts of bi-hyperideals and quasi-hyperideals

of an ordered Krasner hyperring and present several examples of them. Some properties of

bi-hyperideals and quasi-hyperideals in ordered Krasner hyperrings are provided. Moreover,

we introduce and analyze the notion of prime bi-hyperideal of an ordered Krasner hyperring.

Finally, we discuss some properties of topological bi-hyperideals in ordered Krasner hyperrings.
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1. Introduction and summary

Krasner’s hyperring introduced and studied by M. Krasner is a triple (R,+, ·) where (R,+)

is a canonical hypergroup, (R, ·) is a semigroup and the operation · is distributive over the

hyperoperation +, which means that for all x, y, z of R we have: x · (y + z) = x · y + x · z
and (x + y) · z = x · z + y · z. We call (R,+, ·) a Krasner hyperfield if (R,+, ·) is a Krasner

hyperring and (R \ {0}, ·) is a group. Some principal notions of hyperring theory can be found

in [2, 10, 13, 14, 29, 31]. We invite the readers to [12] to see more about the hyperring theory.

The concept of ideals in ring (semigroup) theory plays the same role as normal subgroups in

group theory. Moreover, there exist several kinds of ideals. One of the important kinds of ideals

is bi-ideals. Since the concept of ordered Krasner hyperring is a generalizations of the concepts

of ring, ordered semigroup and ordered semihypergroup, it is a natural question to ask what

does happen for bi-ideals if we consider an ordered Krasner hyperring instead of a ring, ordered

semigroup or ordered semihypergroup. The answer to this question is our main motivation to

investigate the notion of bi-hyperideals in ordered Krasner hyperrings.

In mathematics, an ordered semigroup [4] is a semigroup (S, ·) together with a partial order

≤ that is compatible with the semigroup operation, meaning that for all a, b, x ∈ S, a ≤ b

implies that a · x ≤ b · x and x · a ≤ x · b. The concept of a bi-ideal is a very interesting and

important thing in semigroups and ordered semigroups. R. A. Good and D. R. Hughes [15]

introduced the notion of bi-ideals of a semigroup as early as 1952. Later, bi-ideals of ordered

semigroups were studied by many authors, for example, see [20, 21, 30]. We mean by a bi-ideal

is a subsemigroup A of a semigroup (S, ·) such that ASA ⊆ A. A subset A of a ring R is called

a bi-ideal [26] of R if (1) A is a subring of R and (2) ARA ⊆ A. It is easy to see that bi-ideals

are a generalization of left (right) ideals. The notion of quasi-ideal was first introduced by O.

Steinfeld [28] for rings and semigroups as a generalization of the one-sided ideal. Some principal

notions of quasi-ideal theory can be found in [17, 19, 22, 27]. By a quasi-ideal of a semigroup
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(S, ·) we mean a subsemigroup Q of S satisfying SQ ∩QS ⊆ Q.

In [16], D. Heidari and B. Davvaz studied a semihypergroup (H, ◦) besides a binary relation

≤, where ≤ is a partial order relation such that satisfies the monotone conditin. Indeed, an

ordered semihypergroup (H, ◦,≤) is a semihypergroup (H, ◦) together with a partial order ≤
that is compatible with the hyperoperation, meaning that for any x, y, z ∈ H,

x ≤ y ⇒ z ◦ x ≤ z ◦ y and x ◦ z ≤ y ◦ z.
Here, z ◦ x ≤ z ◦ y means for any a ∈ z ◦ x there exists b ∈ z ◦ y such that a ≤ b. The case

x ◦ z ≤ y ◦ z is defined similarly.

J. Chvalina [8] have started the concept of ordered semihypergroups in 1994 as a special class

of hypergroups. The concept of ordered semihypergroups is a generalization of the concept of

ordered semigroups. The concept of ordering hypergroups extended by many authors, for ex-

ample, see [8, 9, 16, 18].

In the rest of this section, we provide a brief account of the topic of hyperstructure. Hyper-

structure theory was first initiated by F. Marty [24], in 1934 at the 8th Congress of Scandinavian

Mathematicians, when he defined the hypergroups and began to investigate their properties with

applications to groups, rational fractions and algebraic functions. Hyperstructures have many

applications to several sectors of both pure and applied sciences. A comprehensive review of the

theory of hyperstructures appears in [6, 7, 11, 12, 29]. Let H be a non-empty set. A mapping

◦ : H ×H → P∗(H), where P∗(H) denotes the family of all non-empty subsets of H, is called

a hyperoperation on H. The couple (H, ◦) is called a hyperstructure. In the above definition, if

A and B are two non-empty subsets of H and x ∈ H, then we denote

A ◦B =
∪
a∈A
b∈B

a ◦ b, A ◦ x = A ◦ {x} and x ◦B = {x} ◦B.

A hyperstructure (H, ◦) is called a semihypergroup if for all x, y, z ∈ H, (x ◦ y) ◦ z = x ◦ (y ◦ z),
which means that ∪

u∈x◦y
u ◦ z =

∪
v∈y◦z

x ◦ v.

A non-empty subset K of a semihypergroup (H, ◦) is called a subsemihypergroup of H if K ◦K ⊆
K. Let (H, ◦) be a semihypergroup. Then, H is called a hypergroup if it satisfies the reproduction

axiom, for all x ∈ H, H◦x = x◦H = H. A hypergroup (H, ◦) is called commutative if a◦b = b◦a
for every a, b ∈ H. A non-empty subset K of a hypergroup (H, ◦) is called a subhypergroup of

H if itself is a hypergroup under hyperoperation ◦ restricted to K. It is clear that a subset K

of H is a subhypergroup if and only if K ◦ a = a ◦K = K, under the hyperoperation on H.

2. Review of basic notions

In this section, we give some definitions of the basic notions of Krasner hyperrings, which are

necessary for the subsequent section.

Definition 2.1. [25] A canonical hypergroup is a non-empty set R endowed with an additive

hyperoperation + : R×R→ P∗(R), satisfying the following properties:

(1) For any x, y, z ∈ R, x+ (y + z) = (x+ y) + z;

(2) For any x, y ∈ R, x+ y = y + x;

(3) There exists 0 ∈ R such that 0 + x = x, for any x ∈ R;

(4) For every x ∈ R, there exists a unique element x′ ∈ R such that 0 ∈ x + x′; (we shall

write −x for x′ and we call it the opposite of x.)

(5) z ∈ x+ y implies that y ∈ −x+ z and x ∈ z − y, that is (R,+) is reversible.
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The following equalities follow easily from the axioms: −(−a) = a, −(a + b) = −a − b and

a+R = R, for all a ∈ R.

Definition 2.2. [23] A Krasner hyperring is an algebraic hypersructure (R,+, ·) which satisfies

the following axioms:

(1) (R,+) is a canonical hypergroup;

(2) (R, ·) is a semigroup having zero as a bilaterally absorbing element, i.e., x · 0 = 0 = 0 ·x;
(3) The multiplication · is distributive with respect to the hyperoperation +, i.e., x · (y+z) =

x · y + x · z and (x+ y) · z = x · z + y · z for all x, y, z of R.

The element 0 is called the zero element or simply the zero of the Krasner hyperring (R,+, ·).
It can be easily proved that zero is unique. For x ∈ R, let −x denote the unique inverse of x in

(R,+). Then, −(−x) = x and −(x + y) = −x − y, where −A = {−a | a ∈ A} for all x, y ∈ R.

In addition, we have (x+ y) · (z+w) ⊆ x · z+ x ·w+ y · z+ y ·w, (−x) · y = x · (−y) = −(x · y),
for all x, y, z, w ∈ R. A Krasner hyperring R is called commutative (with unit element) if (R, ·)
is a commutative semigroup (with unit element). R is called with identity, if there exists an

element, say 1 ∈ R, such that 1 · x = x = x · 1, for all x ∈ R. A Krasner hyperfield is a Krasner

hyperring for which (R \ {0}, ·) is a group.

A subhyperring of a Krasner hyperring (R,+, ·) is a non-empty subset T of R which forms a

Krasner hyperring containing 0 under the hyperoperation + and the operation · on R, that is,
T is a canonical subhypergroup of (R,+) and T · T ⊆ T . Then a non-empty subset T of R is a

subhyperring of (R,+, ·) if and only if for all x, y ∈ T , x+ y ⊆ T , −x ∈ T and x · y ∈ T .

A non-empty subset I of a Krasner hyperring (R,+, ·) is called a left (resp. right) hyperideal

of R if (I,+) is a canonical subhypergroup of (R,+) and for every a ∈ I and r ∈ R, r · a ∈ I

(resp. a · r ∈ I). I is called a hyperideal if I is both left and right hyperideal. That is, a+ b ⊆ I

and −a ∈ I, for all a, b ∈ I and a · r, r · a ∈ I, for all a ∈ I and r ∈ R.

A homomorphism from a Krasner hyperring (R1,+1, ·1) into a Krasner hyperring (R2,+2, ·2) is
a function φ : R1 → R2 such that we have: (1) φ(a+1b) ⊆ φ(a)+2φ(b), (2) φ(a·1b) = φ(a)·2φ(b).
Also φ is called a good (strong) homomorphism if in the previous condition (1), the equality is

valid. An isomorphism from (R1,+1, ·1) into (R2,+2, ·2) is a bijective good homomophism from

(R1,+1, ·1) onto (R2,+2, ·2).

Definition 2.3. [1] (R,+, ·) is a partially ordered ring if R has a partial order ≤ satisfying the

following conditions:

(1) For all a, b, c ∈ R, a ≤ b implies that a+ c ≤ b+ c.

(2) For all a, b, c ∈ R, a ≤ b and 0 ≤ c implies that a · c ≤ b · c.

Remark 2.1. It is easy to verify that R has a relation ≤ satisfying the following conditions:

(1) a ≥ 0 and −a ≥ 0 if and only if a = 0,

(2) a, b ≥ 0 implies that a+ b ≥ 0,

(3) a, b ≥ 0 implies that a · b ≥ 0.

3. On quasi-hyperideals and bi-hyperideals in ordered Krasner hyperrings

Ordered algebraic structures such as ordered groups, ordered semigroups and ordered rings

have been widely studied. For more details on ordered algebraic structures we refer to [5].

Ordered polygroups was introduced in a paper of Bakhshi and Borzooei [3]. Ordered hyper-

structures are studied by Heidari and Davvaz [16]. In the following, we deal with ordered

Krasner hyperrings.
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Definition 3.1. An algebraic hypersructure (R,+, ·,≤) is called an ordered Krasner hyperring

if (R,+, ·) is a Krasner hyperring with a partial order relation ≤ such that for all a, b, c ∈ R:

(1) If a ≤ b, then a+ c ≤ b+ c, meaning that for any x ∈ a+ c, there exists y ∈ b+ c such

that x ≤ y.

(2) If a ≤ b and 0 ≤ c, then a · c ≤ b · c and c · a ≤ c · b.

An element x ∈ R is called positive if 0 ≤ x. The set of all positive elements of R is called

the positive cone of R and is denoted by P = R+. x ∈ R is called negative if x ≤ 0. The set

of all negative elements of R is called the negative cone of R and is denoted by R−. If P is the

positive cone of an ordered Krasner hyperring, then P ∩(−P ) = {0}, P +P ⊆ P , and P ·P ⊆ P .

Note that every Krasner hyperring is an ordered Krasner hyperring for the trivial order.

Definition 3.2. Let (R,+, ·,≤) be an ordered Krasner hyperring. A non-empty subset I of R

is called a left (resp. right) hyperideal of R if it satisfies the following conditions:

(1) (I,+) is a canonical subhypergroup of (R,+);

(2) R · I ⊆ I (resp. I ·R ⊆ I);

(3) If a ∈ I and b ∈ R such that b ≤ a, then b ∈ I.

By two-sided hyperideal or simply hyperideal, we mean a non-empty subset I of R which is

both a left and a right hyperideal of R.

Definition 3.3. Let (R1,+1, ·1,≤1) and (R2,+2, ·2,≤2) be two ordered Krasner hyperrings and

φ : R1 → R2 be an isotone function, that is, a, b ∈ R1, a ≤1 b implies φ(a) ≤2 φ(b). Then,

(1) φ is said to be an order homomorphism if φ is a homomorphism of Krasner hyperrings

(R1,+1, ·1) and (R2,+2, ·2).
(2) φ is said to be an order isomorphism if φ is an isomorphism of Krasner hyperrings and

φ−1 is isotone.

Also φ is called a good (strong) order homomorphism if φ is a good (strong) homomorphism

of Krasner hyperrings (R1,+1, ·1) and (R2,+2, ·2).

Example 3.1. Let R = {a, b, c, d} be a set with the hyperaddition ⊕ and the multiplication ⊙
defined as follows:

⊕ a b c d

a a b c d

b b R {b, c, d} {b, c, d}
c c {b, c, d} R {b, c, d}
d d {b, c, d} {b, c, d} R

and
⊙ a b c d

a a a a a

b a b c d

c a c d b

d a d b c

Then, (R,⊕,⊙) is a Krasner hyperfield. We have (R,⊕,⊙,≤) is an ordered Krasner hyperfield

where the order relation ≤ is defined by:

≤:= {(a, a), (b, b), (c, c), (d, d), (a, b), (a, c), (a, d)}.

The covering relation and the figure of R are given by:

≺= {(a, b), (a, c), (a, d)}.
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Lemma 3.1. Let (R1,+1, ·1,≤1) and (R2,+2, ·2,≤2) be two ordered Krasner hyperrings. Then,

(1) If φ : R1 → R2 is an order homomorphism, then we have φ(R1
+) ⊆ R2

+.

(2) If φ : R1 → R2 is a good (strong) hyperring homomorphism and φ(R1
+) ⊆ R2

+, then φ

is isotone.

Proof. (1): If x ∈ R1
+, i.e., 0 ≤1 x then 0R2 = φ(0R1) ≤2 φ(x). This means that φ(x) ∈ R2

+.

Hence φ(R1
+) ⊆ R2

+.

(2): Assume that x ≤1 y. Then, −x+y ⊆ R1
+ and so −φ(x)+φ(y) = φ(−x+y) ⊆ φ(R1

+) ⊆
R2

+. Hence φ(x) ≤2 φ(y). This implies that φ is isotone. �

Definition 3.4. Let (R1,+1, ·1,≤1) and (R2,+2, ·2,≤2) be two ordered Krasner hyperrings. A

function φ : R1 → R2 is said to be exact if φ(R1
+) = R2

+. Also R1 is strongly isomorphic to

R2 if there is a good (strong) order isomorphism φ : R1 → R2. If R1 is strongly isomorphic to

R2, then it is denoted by R1
∼= R2.

Theorem 3.1. Let (R1,+1, ·1,≤1) and (R2,+2, ·2,≤2) be two ordered Krasner hyperrings. Then,

the following assertions are equivalent:

(1) R1
∼= R2.

(2) There is an exact hyperring isomorphism φ : R1 → R2.

Proof. (1) ⇒ (2): Assume that (1) holds. Then, there is a good (strong) order isomorphism

φ : R1 → R2. By (1) of Lemma 3.1, φ(R1
+) ⊆ R2

+. Let ψ = φ−1. Then, ψ satisfies the

condition (1) of Lemma 3.1 and so ψ(R2
+) ⊆ R1

+. Hence R2
+ = φ(ψ(R2

+)) ⊆ φ(R1
+). Thus

φ(R1
+) = R2

+.

(2) ⇒ (1): This proof is straightforward. �

Our aim in the following is to introduce and study the concept of a quasi-hyperideal of ordered

Krasner hyperrings.

Definition 3.5. A non-empty subset Q of an ordered Krasner hyperring (R,+, ·,≤) is called a

quasi-hyperideal of R if the following conditions hold:

(1) (Q,+) is a canonical subhypergroup of (R,+);

(2) (Q ·R) ∩ (R ·Q) ⊆ Q;

(3) When x ∈ Q and y ∈ R such that y ≤ x, imply that y ∈ Q.
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Example 3.2. Let R = {a, b, c, d, e, f, g, h} be a set with the hyperaddition ⊕ and the multipli-

cation ⊙ defined as follows:

⊕ a b c d e f g h

a a b c d e f g h

b b {a, b} d {c, d} f {e, f} h {g, h}
c c d {a, e} {b, f} {c, g} {d, h} e f

d d {c, d} {b, f} {a, b, e, f} {d, h} {c, d, g, h} f {e, f}
e e f {c, g} {d, h} {a, e} {b, f} c d

f f {e, f} {d, h} {c, d, g, h} {b, f} {a, b, e, f} d {c, d}
g g h e f c d a b

h h {g, h} f {e, f} d {c, d} b {a, b}

and

⊙ a b c d e f g h

a a a a a a a a a

b a b a b a b a b

c a a c c e e g g

d a b c d e f g h

e a a e e e e a a

f a b e f e f a b

g a a g g a a g g

h a b g h a b g h

Then, (R,⊕,⊙) is a Krasner hyperring. We have (R,⊕,⊙,≤) is an ordered Krasner hyperring

where the order relation ≤ is defined by:

≤ := {(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (g, g),
(h, h), (a, b), (a, e), (a, f), (b, f), (c, d), (e, f),

(g, c), (g, d), (g, h), (h, d)}.

The covering relation and the figure of R are given by:

≺ = {(a, b), (a, e), (b, f), (c, d), (e, f), (g, c), (g, h), (h, d)}.
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It is easy to see that {a}, {a, b}, {a, e}, {a, g}, {a, b, e, f}, {a, b, g, h}, {a, c, e, g} and {a, b, c, d, e, f, g, h}
are quasi-hyperideals of R.

Every left, right and two-sided hyperideal of an ordered Krasner hyperring R is a quasi-

hyperideal of R. The converse is not true, in general, that is, a quasi-hyperideal may not be a

left, right or a two-sided hyperideal of R.
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Example 3.3. Let R = {a, b, c, d} be a set with a hyperoperation ⊕ and a binary operation ⊙
as follows:

⊕ a b c d

a a b c d

b b {a, b} d c

c c d {a, c} b

d d c b {a, d}
and

⊙ a b c d

a a a a a

b a b b b

c a c c c

d a d d d

Then, (R,⊕,⊙) is a Krasner hyperring [31]. We have (R,⊕,⊙,≤) is an ordered Krasner hy-

perring where the order relation ≤ is defined by:

≤:= {(a, a), (b, b), (c, c), (d, d)}.

Now, it is easy to see that Q1 = {a, b}, Q2 = {a, c} and Q3 = {a, d} are quasi-hyperideals of R,

but they are not left hyperideals of R.

Proposition 3.1. Let (R,+, ·,≤) be an ordered Krasner hyperring. Then, the following state-

ments are hold:

(1) Every quasi-hyperideal of R is a subhyperring of R.

(2) The intersection of quasi-hyperideals set of R is a quasi-hyperideal of R.

(3) If I is a left hyperideal and J a right hyperideal of R, then Q = I∩J is a quasi-hyperideal

of R.

(4) If Q is a quasi-hyperideal of R and T is a subhyperring of R, then Q ∩ T is a quasi-

hyperideal of T .

Proof. (1): Let Q be a quasi-hyperideal of an ordered Krasner hyperring (R,+, ·,≤). Then,

Q ·Q ⊆ R ·Q and Q ·Q ⊆ Q ·R. Hence Q ·Q ⊆ R ·Q∩Q ·R ⊆ Q. Therefore, Q is a subhyperring

of R.

(2): Let {Qk : k ∈ Λ} be a family of quasi-hyperideals of R and Q =
∩
k∈Λ

Qk. Since 0 ∈
∩
k∈Λ

Qk,

it follows that
∩
k∈Λ

Qk ̸= ∅. We show that Q is a quasi-hyperideal of R. Let x, y ∈ Q. Then

x, y ∈ Qk for every k ∈ Λ. By assumption, we have x + y ⊆ Qk and −x ∈ Qk for each k ∈ Λ.

So we have x+ y ⊆ Q and −x ∈ Q. Thus (Q,+) is a canonical subhypergroup of (R,+). Also

for all Qk, k ∈ Λ, we have (R · Q) ∩ (Q · R) ⊆ (R · Qk) ∩ (Qk · R) ⊆ Qk. Now, let x ∈ Q and

y ∈ R such that y ≤ x. Then for every k ∈ Λ, y ∈ Qk. Hence y ∈ Q. Therefore, Q =
∩
k∈Λ

Qk is

a quasi-hyperideal of R.

(3): Let x, y ∈ Q = I ∩ J . Then x, y ∈ I and x, y ∈ J . So we have x + y ⊆ I ∩ J = Q

and −x ∈ I ∩ J = Q. Thus (Q,+) is a canonical subhypergroup of (R,+). Since I is a left

hyperideal and J a right hyperideal of R, we have IJ ⊆ I and IJ ⊆ J . So IJ ⊆ I ∩ J . Thus

I ∩ J = Q ̸= ∅. Also we have

(R ·Q) ∩ (Q ·R) = (R · (I ∩ J)) ∩ ((I ∩ J) ·R) ⊆ (R · I) ∩ (J ·R) ⊆ I ∩ J = Q.

Now, let x ∈ Q and y ∈ R such that y ≤ x. Then, we have x ∈ I and x ∈ J . So y ∈ I and

y ∈ J . Hence y ∈ I ∩ J = Q. Therefore, Q is a quasi-hyperideal of R.
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(4): Let Q1 = Q ∩ T . We show that Q1 is a quasi-hyperideal of T . Clearly Q1 is a canonical

subhypergroup of T . Since Q1 ⊆ Q, it follows that (Q1 · T ) ∩ (T ·Q1) ⊆ (Q ·R) ∩ (R ·Q) ⊆ Q.

Since Q1 ⊆ T and T is a subhyperring of R, we have (Q1 ·T )∩ (T ·Q1) ⊆ T ·T ⊆ T . So we have

checked that (Q1 · T ) ∩ (T ·Q1) ⊆ Q1. If x ∈ Q1 and y ∈ T such that y ≤ x, then since x ∈ Q,

it follows that y ∈ Q. Hence y ∈ Q1. Therefore, Q1 is a quasi-hyperideal of T . �

In the following, we proceed with the study of bi-hyperideals in ordered Krasner hyperrings

and give its characterizations.

Definition 3.6. Let (R,+, ·,≤) be an ordered Krasner hyperring. A non-empty subset A of R

is called a bi-hyperideal of R if the following conditions hold:

(1) (A,+) is a canonical subhypergroup of (R,+) and A ·A ⊆ A;

(2) A ·R ·A ⊆ A;

(3) When x ∈ A and y ∈ R such that y ≤ x, imply that y ∈ A.

Example 3.4. Let R = {a, b, c} be a set with the hyperaddition ⊕ and the multiplication ⊙
defined as follows:

⊕ a b c

a a b c

b b R b

c c b {a, c}

and

⊙ a b c

a a a a

b a b c

c a c a

Then, (R,⊕,⊙) is a Krasner hyperring. We have (R,⊕,⊙,≤) is an ordered Krasner hyperring

where the order relation ≤ is defined by:

≤:= {(a, a), (b, b), (c, c), (a, b), (a, c), (c, b)}.

The covering relation and the figure of R are given by:

≺= {(a, c), (c, b)}.

ba

bc

bb

It is easy to see that {a}, {a, c} and {a, b, c} are bi-hyperideals of R.
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Example 3.5. Let R = {a, b, c, d, e, f} be a set with the hyperaddition ⊕ and the multiplication

⊙ defined as follows:

⊕ a b c d e f

a a b c d e f

b b {a, b} d {c, d} f {e, f}
c c d {a, c, e} {b, d, f} c d

d d {c, d} {b, d, f} R d {c, d}
e e f c d {a, e} {b, f}
f f {e, f} d {c, d} {b, f} {a, b, e, f}

and

⊙ a b c d e f

a a a a a a a

b a b a b a b

c a a c c e e

d a b c d e f

e a a e e a a

f a b e f a b

Then, (R,⊕,⊙) is a Krasner hyperring. We have (R,⊕,⊙,≤) is an ordered Krasner hyperring

where the order relation ≤ is defined by:

≤ := {(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (a, b),
(a, c), (a, d), (a, e), (a, f), (b, d), (b, f), (c, d),

(e, c), (e, d), (e, f), (f, d)}.

The covering relation and the figure of R are given by:

≺ = {(a, b), (a, e), (b, f), (c, d), (e, c), (e, f), (f, d)}.

a

b��
�

@
@

@
ebZ

Z
Z

Z
ZZ

b b
bf �
�
� b c@

@
@
bd

It is easy to see that {a}, {a, b}, {a, e}, {a, c, e}, {a, b, e, f} and {a, b, c, d, e, f} are bi-hyperideals

of R.

The concept of bi-hyperideals of an ordered Krasner hyperring is a generalization of the

concept of hyperideals (left hyperideals, right hyperideals) of an ordered Krasner hyperring.

Obviously, every left (resp. right) hyperideal of an ordered Krasner hyperring R is a bi-hyperideal

of R, but the converse need not be true. Indeed, If A is a left (right) hyperideal of R, then (A,+)

is a canonical subhypergroup of (R,+). Since AA ⊆ RA ⊆ A, it follows that A is a subhyperring

of R.
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Example 3.6. Let (R,+, ·) be a Krasner hyperring and M(R) =

{(
a b

0 0

)
: a, b ∈ R

}
be a

collection of 2 × 2 matrices over R. The hyperaddition ⊕ and the multiplication ⊙ are defined

on M(R) by: (
a b

0 0

)
⊕

(
c d

0 0

)
=

{(
x y

0 0

)
: x ∈ a+ c, y ∈ b+ d

}
,(

a b

0 0

)
⊙
(
c d

0 0

)
=

(
ac ad

0 0

)
,

for all

(
a b

0 0

)
,

(
c d

0 0

)
∈ M(R). Then, (M(R),⊕,⊙) is a Krasner hyperring [2]. Moreover,

(M(R),⊕,⊙,≼) is an ordered Krasner hyperring, where A = (aij) ≼ B = (bij) ⇔ aij = bij for

all 1 6 i, j 6 2. Here A =

{(
a 0

0 0

)
: a ∈ R

}
is a bi-hyperideal of M(R), but it is not a right

hyperideal of M(R).

Lemma 3.2. Let (R,+, ·,≤) be an ordered Krasner hyperring. Then,

(1) If Ak is a bi-hyperideal of R for all k ∈ Λ, then
∩
k∈Λ

Ak is a bi-hyperideal of R.

(2) If A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ An ⊆ · · · is a ascending chain of bi-hyperideals of R and A is

the union of these bi-hyperideals, then A is a bi-hyperideal of R.

Proof. (1): Let {Ak : k ∈ Λ} be a family of bi-hyperideals ofR andA =
∩
k∈Λ

Ak. Since 0 ∈
∩
k∈Λ

Ak,

it follows that
∩
k∈Λ

Ak ̸= ∅. It is easy to check that (A,+) is a canonical subhypergroup of (R,+)

and A ·A ⊆ A. Now, let x ∈ A ·R ·A. Then x = a1 · r · a2 for some a1, a2 ∈ A and r ∈ R. Since

each Ak is a bi-hyperideal of R, we have x ∈ Ak ·R ·Ak ⊆ Ak for all k ∈ Λ. Thus x ∈ Ak for all

k ∈ Λ. Hence x ∈
∩
k∈Λ

Ak = A. Since x was chosen arbitrarily, we have A · R · A ⊆ A. If x ∈ A

and y ∈ R such that y ≤ x, then x ∈ Ak for all k ∈ Λ. Since each Ak is a bi-hyperideal of R, we

have y ∈ Ak for all k ∈ Λ. Thus y ∈
∩
k∈Λ

Ak = A. Therefore, A is a bi-hyperideal of R.

(2): It is easy to show that (A,+) is a canonical subhypergroup of (R,+) and A · A ⊆ A.

Now, let x ∈ A ·R ·A. Then x ∈ An ·R ·An for some bi-hyperideal An of R. Hence x ∈ An ⊆ A.

Thus we have A · R · A ⊆ A. If x ∈ A and y ∈ R such that y ≤ x, then x ∈ An for some

bi-hyperideal An of R. Since each An is a bi-hyperideal of R, it follows that y ∈ An for some

bi-hyperideal An of R. Thus, y ∈ A. Therefore, A is a bi-hyperideal of R. �
Lemma 3.3. Let (R,+, ·,≤) be an ordered Krasner hyperring. Then,

(1) Every quasi-hyperideal Q of a two-sided hyperideal I of R is a bi-hyperideal of R. In

particular, every quasi-hyperideal Q of R is a bi-hyperideal of R.

(2) If A is a bi-hyperideal of R and T is a subhyperring of R, then A ∩ T is a bi-hyperideal

of T .

(3) If B is a hyperideal of R and Q is a quasi-hyperideal of R, then B ∩Q is a bi-hyperideal

and a quasi-hyperideal of B.

Proof. (1): It is easy to see that (Q,+) is a canonical subhypergroup of (R,+) and Q ·Q ⊆ Q.

Since Q ⊆ I, we have

Q ·R ·Q ⊆ Q ·R · I ∩ I ·R ·Q ⊆ Q · I ∩ I ·Q ⊆ Q.

Now, let x ∈ Q and y ∈ R such that y ≤ x. Since Q ⊆ I, it follows that x ∈ I. By assumption,

I is a hyperideal of R. Thus we have y ∈ I. Since Q is a quasi-hyperideal of I, it follows that
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y ∈ Q. Hence Q is a bi-hyperideal of R.

(2): Let A1 = A ∩ T . We show that A1 is a bi-hyperideal of T . Clearly, A1 is a canonical

subhypergroup of (T,+) and A1 ·A1 ⊆ A1. Since A1 ⊆ A, it follows that A1 ·T ·A1 ⊆ A·R·A ⊆ A.

Since A1 ⊆ T and T is a subhyperring of R, we have A1 · T · A1 ⊆ T . So we have checked that

A1 · T · A1 ⊆ A1. Now, if x ∈ A1 and y ∈ T such that y ≤ x, then since x ∈ A, it follows that

y ∈ A. Hence y ∈ A1. Therefore, A1 is a bi-hyperideal of T .

(3): This proof is straightforward. �

4. Main results

First, we give certain definitions needed for our purpose. The set of bi-hyperideals of R is

totally ordered under inclusion if for all bi-hyperideals A, J either A ⊆ J or J ⊆ A. In Example

3.4, the set of bi-hyperideals of R is totally ordered under inclusion, but in Example 3.5, the

set of bi-hyperideals of R is not totally ordered under inclusion. In Example 3.2, {a}, {a, b},
{a, e}, {a, g}, {a, b, e, f}, {a, b, g, h}, {a, c, e, g} and {a, b, c, d, e, f, g, h} are bi-hyperideals of R.

So, the set of bi-hyperideals of R is not totally ordered under inclusion. A non-empty subset

P of an ordered Krasner hyperring (R,+, ·,≤) is called a prime hyperideal of R if the following

conditions hold: (1) A · B ⊆ P implies that A ⊆ P or B ⊆ P for any two hyperideal A,B of

R and (2) If x ∈ P and y ≤ x, then y ∈ P for every y ∈ R. In Example 3.4, {a, c} is a prime

hyperideal of R. A non-empty subset I of an ordered Krasner hyperring (R,+, ·,≤) is called a

semiprime hyperideal of R if the following conditions hold: (1) A ·A ⊆ I implies that A ⊆ I for

any hyperideal A of R and (2) If x ∈ I and y ≤ x, then y ∈ I for every y ∈ R. In Example

3.4, {a, c} is a semiprime hyperideal of R, but {a} is not a semiprime hyperideal of R. Indeed,

{a, c} ⊙ {a, c} = {a}, but {a, c} * {a}.

Definition 4.1. A bi-hyperideal A of an ordered Krasner hyperring (R,+, ·,≤) is called a prime

bi-hyperideal of R if A1 · A2 ⊆ A implies either A1 ⊆ A or A2 ⊆ A for any bi-hyperideals A1

and A2 of R.

Example 4.1. (1) In Example 3.4, {a, c} is a prime bi-hyperideal of R, but {a} is not a

prime bi-hyperideal of R.

(2) In Example 3.5, {a, b}, {a, c, e} and {a, b, e, f} are prime bi-hyperideals of R. The bi-

hyperideal {a} is not prime. Indeed, {a, b}⊙ {a, e} = {a}, but {a, b} * {a} and {a, e} *
{a}. Also, {a, e} is not a prime bi-hyperideal of R. Indeed, {a, b, e, f}⊙{a, c, e} = {a, e},
but {a, b, e, f} * {a, e} and {a, c, e} * {a, e}.

(3) In Example 3.2, {a, b, e, f}, {a, b, g, h} and {a, c, e, g} are prime bi-hyperideals of R, but

{a}, {a, b}, {a, e} and {a, g} are not prime bi-hyperideals of R.

Proposition 4.1. Let A be a prime bi-hyperideal of an ordered Krasner hyperring R. Then, A

is a prime one-sided hyperideal of R.

Proof. Let A be a prime bi-hyperideal of R. Let I be a right hyperideal of R and J a left

hyperideal of R such that IJ ⊆ A. Suppose that I * A. Assume that x ∈ J and s ∈ I \A. Then
sIx ⊆ IJ ⊆ A. Since A is a prime bi-hyperideal of R and s /∈ A, we have x ∈ A. Hence J ⊆ A.

So, for any right hyperideal I and left hyperideal J of R, IJ ⊆ A implies I ⊆ A or J ⊆ A. Now,

we show that A is a one-sided hyperideal of R. Since A is a bi-hyperideal of R, it follows that

(AR)(RA) ⊆ ARA ⊆ A. Since AR is a right hyperideal and RA is a left hyperideal of R, we

have AR ⊆ A or RA ⊆ A. Therefore, A is a right hyperideal or a left hyperideal of R. �
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Definition 4.2. A bi-hyperideal A of an ordered Krasner hyperring (R,+, ·,≤) is called a

semiprime bi-hyperideal of R if A1 · A1 ⊆ A implies A1 ⊆ A, for any bi-hyperideal A1 of

R.

Notice that every prime bi-hyperideal is a semiprime bi-hyperideal. A semiprime bi-hyperideal

is not necessarily prime. In Example 3.2, {a} and {a, b} are semiprime bi-hyperideals of R, but

{a} and {a, b} are not prime bi-hyperideals of R.

Proposition 4.2. The intersection of any family of prime bi-hyperideals of an ordered Krasner

hyperring (R,+, ·,≤) is a semiprime bi-hyperideal of R.

Proof. Let {Ak : k ∈ Λ} be a family of prime bi-hyperideals of R and A =
∩
k∈Λ

Ak. By (1) of

Lemma 3.2, A is a bi-hyperideal of R. Let B be any bi-hyperideal of R such that B2 ⊆ A. Then

B2 ⊆ Ak for all k ∈ Λ. Since each Ak is a prime bi-hyperideal of R, it follows that B ⊆ Ak for

all k ∈ Λ. Hence B ⊆ A. Therefore, A is a semiprime bi-hyperideal of R. �

Proposition 4.3. Let A be a semiprime bi-hyperideal and B a left (right) hyperideal of an

ordered Krasner hyperring (R,+, ·,≤) such that B2 ⊆ A. Then we have B ⊆ A.

Proof. Suppose that B * A. Then there exists a ∈ B such that a /∈ A. Since B is a left (right)

hyperideal of R, we have aRa ⊆ BRB ⊆ BB ⊆ A. Since A is a semiprime bi-hyperideal of R,

it follows that a ∈ A, that is a contradiction. Hence B ⊆ A and so the proof is completed. �

Definition 4.3. If (R,+, ·,≤) is an ordered Krasner hyperring and A ⊆ R, then (A] is the

subset of R defined as follows:

(A] = {t ∈ R : t ≤ a, for some a ∈ A}.
Note that the condition (3) in Definition 3.2 is equivalent to A = (A]. If A and B are non-empty

subsets of R, then we have

(1) A ⊆ (A]. Hence, R = (R].

(2) (A] · (B] ⊆ (A ·B],

(3) ((A] · (B]] = (A ·B],

(4) ((A]] = (A],

(5) A ⊆ B implies (A] ⊆ (B].

(6) If A and B are left (respectively, right, two-sided) hyperideals of R, then (AB] is left

(respectively, right, two-sided) hyperideal of R.

Definition 4.4. Let (R,+, ·,≤) be an ordered Krasner hyperring. An element a ∈ R is said to

be regular if there exists an element x ∈ R such that a ≤ (a ·x) ·a. An ordered Krasner hyperring

R is called regular if all elements of R are regular.

Equivalent definitions:

(1) a ∈ (aRa], ∀a ∈ R.

(2) A ⊆ (ARA], ∀A ⊆ R.

Example 4.2. In Example 3.2, (R,⊕,⊙,≤) is a regular ordered Krasner hyperring.

Definition 4.5. An ordered Krasner hyperring (R,+, ·,≤) is called left (resp. right) regular if

for every a ∈ R there exists an element x ∈ R such that a ≤ x · a2 (resp. a ≤ a2 ·x). An ordered

Krasner hyperring R is called left (resp. right) regular if all elements of R are left (resp. right)

regular.

Equivalent definitions:
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(1) a ∈ (Ra2], (resp. a ∈ (a2R]) ∀a ∈ R.

(2) A ⊆ (RA2], (resp. A ⊆ (A2R]) ∀A ⊆ R.

Example 4.3. (1) In Example 3.2, (R,⊕,⊙,≤) is a left regular ordered Krasner hyperring.

(2) In Example 3.4 and Example 3.5, (R,⊕,⊙,≤) is not a left regular ordered Krasner

hyperring.

Definition 4.6. An ordered Krasner hyperring is called completely regular if it is regular, left

regular and right regular.

Example 4.4. In Example 3.2, (R,⊕,⊙,≤) is a completely regular ordered Krasner hyperring,

but in Example 3.4 and Example 3.5, (R,⊕,⊙,≤) is not a completely regular ordered Krasner

hyperring.

Theorem 4.1. Let (R,+, ·,≤) be an ordered Krasner hyperring. Then R is regular if and only

if every bi-hyperideal A of R is a semiprime bi-hyperideal.

Proof. Assume that R is a regular ordered Krasner hyperring. Let A be a bi-hyperideal of R.

Let x ∈ R be such that xRx ⊆ A. Since R is regular, there exists y ∈ R such that x ≤ xyx. Thus

we have x ≤ xyx ∈ xRx ⊆ A. Hence x ∈ (A] = A. Therefore, A is a semiprime bi-hyperideal of

R. We remark that since A is a bi-hyperideal of R, we have (xRx] ⊆ A if and only if xRx ⊆ A.

Conversely, suppose that every bi-hyperideal of R is a semiprime bi-hyperideal. Let a ∈ R.

It is easy to check that aRa is a bi-hyperideal of R. By assumption, aRa is a semiprime bi-

hyperideal of R. Since aRa ⊆ (aRa], it follows that a ∈ (aRa]. Thus there exists x ∈ R such

that a ≤ axa. Hence R is a regular ordered Krasner hyperring. �

Theorem 4.2. Let (R,+, ·,≤) be an ordered Krasner hyperring. Then R is a regular ordered

Krasner hyperring if and only if (A ·B] = (A∩B] for every right hyperideal A and left hyperideal

B of R.

Proof. It is straightforward. �

In the following, some properties and relationships between bi-hyperideals and quasi-hyperideals

are investigated.

Theorem 4.3. Let (R,+, ·,≤) be an ordered Krasner hyperring. Then the following conditions

are equivalent:

(1) R is regular.

(2) A = A ·R ·A for every bi-hyperideal A of R.

(3) Q = Q ·R ·Q for every quasi-hyperideal Q of R.

Proof. (1) ⇒ (2): Assume that (1) holds. Let A be any bi-hyperideal of R and a any element of

A. Then there exists x ∈ R such that a ≤ (a · x) · a. It is easy to see that (a · x) · a ∈ A ·R ·A.
Hence, A ⊆ A · R · A. Since A is a bi-hyperideal of R, it follows that A · R · A ⊆ A. Therefore,

we have A = A ·R ·A.
(2) ⇒ (3): Evidently, every quasi-hyperideal of R is a bi-hyperideal of R. Then by the

assumption, we have Q = Q ·R ·Q for every quasi-hyperideal Q of R.

(3) ⇒ (1): Assume that (3) holds. Let I and J be any right hyperideal and any left hyperideal

of R, respectively. Then we have (I ∩ J) · R ∩ R · (I ∩ J) ⊆ I · R ∩ R · J ⊆ I ∩ J and so it is

easy to see that I ∩ J is a quasi-hyperideal of R. By the assumption and Theorem 4.2, we have

I ∩J = (I ∩J) ·R · (I ∩J) ⊆ I ·R ·J ⊆ I ·J ⊆ I ∩J . Hence, I ·J = I ∩J and so R is regular. �
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Corollary 4.1. Let (R,+, ·,≤) be an ordered Krasner hyperring. Then, the following statements

are true:

(1) If Q ∩ A = Q · A · Q for every quasi-hyperideal Q and every hyperideal A of R, then R

is a regular ordered Krasner hyperring.

(2) If B ∩A = B ·A ·B for every bi-hyperideal B and every hyperideal A of R, then R is a

regular ordered Krasner hyperring.

(3) If the set of all quasi-hyperideals of R is regular, then R is a regular ordered Krasner

hyperring.

Proof. (1): Let Q be any quasi-hyperideal of R. Since R itself is a hyperideal of R, it follows

that

Q = Q ∩R = Q ·R ·Q.
Then, it follows from Theorem 4.3 that R is regular.

(2): It is obvious.

(3): By assumption, for every quasi-hyperideal Q of R, there exists a quasi-hyperideal B of

R such that Q = Q ·B ·Q ⊆ Q ·R ·Q ⊆ (Q ·R)∩ (R ·Q) ⊆ Q. Hence for every quasi-hyperideal

Q of R, we have Q = Q ·R ·Q. Then, it follows from Theorem 4.3 that R is regular. �

The following proposition shows that the notions of quasi-hyperideal and bi-hyperideal in a

regular ordered Krasner hyperring coincide.

Proposition 4.4. Let (R,+, ·,≤) be a regular ordered Krasner hyperring. Then, the following

statements are hold:

(1) Every bi-hyperideal A of R is a quasi-hyperideal.

(2) For every bi-hyperideal A of a two-sided hyperideal I of R, A is a quasi-hyperideal of R.

Proof. (1): Let A be a bi-hyperideal of R. It is easy to see that R ·A is a left hyperideal and A ·R
is a right hyperideal of R. By Theorem 4.2, we have (A ·R)∩(R ·A) = A ·R ·R ·A ⊆ A ·R ·A ⊆ A.

Hence A is a quasi-hyperideal of R.

(2): First, we show that I is a regular subhyperring of R. Let a ∈ I. Then, there exists x ∈ R

such that a ≤ a · x · a ≤ a · x · (a · x · a) = a · (x · a · x) · a. Since x · a · x ∈ I, it follows that a is

a regular element of I. Hence I is a regular subhyperring of R. By (1), the bi-hyperideal A of

I is a quasi-hyperideal of I. By (1) of Lemma 3.3, A is a bi-hyperideal of R. So by (1), A is a

quasi-hyperideal of R. �

A subset A of an ordered Krasner hyperring (R,+, ·,≤) is called idempotent if A = (A2]. In

Example 3.2, {a, b} is a idempotent subset of R.

Theorem 4.4. Let (R,+, ·,≤) be an ordered Krasner hyperring. Then the following are equiv-

alent:

(1) R is regular.

(2) Every hyperideal of R is idempotent.

(3) Every hyperideal of R is semiprime.

Proof. (1) ⇒ (2): Assume that (1) holds. Let A be any hyperideal of R. Since A2 = A · A ⊆
A ·R ⊆ A, implies A2 ⊆ A. Now, let a ∈ A. Since R is regular, so there exists an element x ∈ R

such that a ≤ (a · x) · a. Since a ∈ A, it follows that a · x ∈ A, for all x ∈ R. It is easy to see

that (a ·x) · a ∈ A ·A = A2. Hence A ⊆ A2. Thus we have A = A2. Therefore, Every hyperideal

of R is idempotent.

(2) ⇒ (3): Let A and J be any hyperideals of R such that A2 ⊆ J . Since A = A · A ⊆ J , it
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follows that A ⊆ J .

(3) ⇒ (1): Assume that (3) holds. Let A and J be any right hyperideal and any left hyperideal

of R, respectively. It is obvious that A · J ⊆ A ∩ J . Also A ∩ J ⊆ A and A ∩ J ⊆ J . Thus we

have (A ∩ J)2 ⊆ A · J . By the assumption and (A ∩ J)2 ⊆ A · J , we have A ∩ J ⊆ A · J . Hence

A ∩ J = A · J . By Theorem 4.2, R is regular. �

Definition 4.7. A bi-hyperideal A of an ordered Krasner hyperring (R,+, ·,≤) is called an

irreducible bi-hyperideal if for any bi-hyperideals I and J of R, I ∩ J = A implies that either

I = A or J = A. The bi-hyperideal A is strongly irreducible if for bi-hyperideals I and J of R,

I ∩ J ⊆ A implies that either I ⊆ A or J ⊆ A.

Proposition 4.5. Let (R,+, ·,≤) be an ordered Krasner hyperring. Then, the following condi-

tions are equivalent:

(1) Every bi-hyperideal of R is strongly irreducible.

(2) Every bi-hyperideal of R is irreducible.

(3) The bi-hyperideals of R form a chain under inclusion.

Proof. (1) ⇒ (2): Assume that (1) holds. Let I and J be any two bi-hyperideals of R. Let A

be a bi-hyperideal of R such that I ∩ J = A. Then we have A ⊆ I and A ⊆ J . Since A is

strongly irreducible, it follows that I ⊆ A or J ⊆ A. So we have I = A or J = A. Hence A is

an irreducible bi-hyperideal of R.

(2) ⇒ (3): Let I and J be any two bi-hyperideals of R. By Lemma 3.2, I∩J is a bi-hyperideal

of R. Since I ∩ J = I ∩ J , by assumption we have I = I ∩ J or J = I ∩ J . This implies that

I ⊆ J or J ⊆ I. Therefore, the set of bi-hyperideals of R form a chain under inclusion.

(3) ⇒ (1): Assume that (3) holds. Let A be a bi-hyperideal of R. Let I and J be any two

bi-hyperideals of R such that I ∩ J ⊆ A. By assumption, we have I ⊆ J or J ⊆ I. Thus either

I ∩ J = I or I ∩ J = J . This implies that I ⊆ A or J ⊆ A. Hence A is a strongly irreducible

bi-hyperideal of R. �

Definition 4.8. A bi-hyperideal A of an ordered Krasner hyperring (R,+, ·,≤) is called a

strongly prime bi-hyperideal of R if A1 ·A2 ∩ A2 ·A1 ⊆ A implies either A1 ⊆ A or A2 ⊆ A for

any bi-hyperideals A1 and A2 of R.

Proposition 4.6. Every strongly irreducible, semiprime bi-hyperideal of an ordered Krasner

hyperring (R,+, ·,≤) is a strongly prime bi-hyperideal of R.

Proof. Let A be a strongly irreducible, semiprime bi-hyperideal of an ordered Krasner hyperring

R. Let A1 and A2 be any two bi-hyperideals of R such that A1 · A2 ∩ A2 · A1 ⊆ A. Since

(A1∩A2)
2 ⊆ A1 ·A2 and (A1∩A2)

2 ⊆ A2 ·A1, we have (A1∩A2)
2 ⊆ A1 ·A2∩A2 ·A1 ⊆ A. Since

A is a semiprime bi-hyperideal, it follows that A1 ∩ A2 ⊆ A. Since A is a strongly irreducible

bi-hyperideal of R, so either A1 ⊆ A or A2 ⊆ A. Therefore, A is a strongly prime bi-hyperideal

of R. �

Theorem 4.5. Let A be a bi-hyperideal of an ordered Krasner hyperring (R,+, ·,≤) and a ∈ R

such that a /∈ A. Then, there exists a strongly irreducible bi-hyperideal I of R such that A ⊆ I

and a /∈ I.

Proof. Let C = {I : I is a bi-hyperideal of R, A ⊆ I, a /∈ I}. Since A ∈ C, it follows that C ̸= ∅.
Also C is a partially ordered set under the usual inclusion. Let {Ik : k ∈ Λ} be a chain in C.
Consider B =

∪
k∈Λ

Ik. We show that B is a bi-hyperideal of R and A ⊆ B. If x, y ∈ B, then
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x ∈ Ii and y ∈ Ij for some i, j ∈ Λ. Since {Ik : k ∈ Λ} be a totally ordered set, it follows that

Ii ⊆ Ij or Ij ⊆ Ii. If, say, Ii ⊆ Ij , then both x, y are inside Ij , so we have x+ y ⊆ Ij ⊆ B. This

implies that x+ y ⊆ B. If, say, Ij ⊆ Ii, then both x, y are inside Ii, so we have x+ y ⊆ Ii ⊆ B.

This implies that x+ y ⊆ B. If x ∈ B, then x ∈ Ii for some i ∈ Λ. Thus we have −x ∈ Ii ⊆ B.

This implies that −x ∈ B. Now, let x, y ∈ B, then x ∈ Ii and y ∈ Ij for some i, j ∈ Λ. Since

Ii ⊆ Ij or Ij ⊆ Ii, it follows that x, y ∈ Ii or x, y ∈ Ij . Thus x · y ∈ Ii ⊆ B or x · y ∈ Ij ⊆ B.

This implies that B · B ⊆ B. Therefore, (B,+) is a canonical subhypergroup of (R,+) and

B ·B ⊆ B. Let x, y ∈ B and z ∈ R. Then, x ∈ Ir and y ∈ Is for some r, s ∈ Λ. Without any loss

of generality we assume that x, y ∈ Is. Hence x · z · y ∈ Is ⊆ B. This implies that B ·R ·B ⊆ B.

If x ∈ B and y ∈ R such that y ≤ x, then x ∈ Ik for some k ∈ Λ. So we have y ∈ Ik ⊆ B. This

implies that y ∈ B. Therefore, B =
∪
k∈Λ

Ik is a bi-hyperideal of R. Since each Ik ∈ C contains

A and a /∈ Ik, we have A ⊆
∪
k∈Λ

Ik = B and a /∈ B. Hence B ∈ C is an upper bound for chain

{Ik : k ∈ Λ}. By Zorn’s lemma, C has a maximal element, say N . We show that N is a strongly

irreducible bi-hyperideal of R. Let A1 and A2 be two bi-hyperideal of R such that A1 * N and

A2 * N . By the maximality of N , we have a ∈ A1 and a ∈ A2. Thus a ∈ A1 ∩ A2, implies

A1 ∩A2 * N . This shows that N is strongly irreducible. Hence the proof is completed. �

Corollary 4.2. A bi-hyperideal A of an ordered Krasner hyperring (R,+, ·,≤) is the intersection

of all strongly irreducible bi-hyperideals of R containing A.

Proof. Let I = {Ik : k ∈ Λ} be the set of all strongly irreducible bi-hyperideals of R containing

A. Clearly, A ⊆
∩
k∈Λ

Ik. Suppose B =
∩
k∈Λ

Ik and A ∈ I. Let 0 ̸= a ∈ R such that a /∈ A.

By Theorem 4.5, there exists a strongly irreducible bi-hyperideal J of R such that A ⊆ J and

a /∈ J . Hence J ∈ I and so a /∈ B. Thus we have B =
∩
k∈Λ

Ik ⊆ A. Hence A =
∩
k∈Λ

Ik and so the

proof is completed. �

Let PR denote the set of strongly irreducible proper bi-hyperideals of an ordered Krasner

hyperring (R,+, ·,≤). For a bi-hyperideal A of R, define the set EA = {J ∈ PR : A * J} and

ξ(PR) = {EA : A is a bi-hyperideal of R}.

Theorem 4.6. Let (R,+, ·,≤) be an ordered Krasner hyperring. If the set of bi-hyperideals of

R form a chain under inclusion, then the set ξ(PR) forms a topology on the set PR.

Proof. Since {0} is a bi-hyperideal of R and E{0} = {J ∈ PR : {0} * J} = ∅, we have ∅ ∈ ξ(PR).

Thus E{0} is an empty subset of ξ(PR). Since R is a bi-hyperideal of itself and strongly irreducible

bi-hyperideals are proper, we have ER = {J ∈ PR : R * J} = PR. So we obtain PR ∈ ξ(PR).

Hence the first axiom for the topology is hold. Now, let EA1 , EA2 ∈ ξ(PR). We shall show

that EA1 ∩ EA2 = EA1∩A2 . If J ∈ EA1 ∩ EA2 , then J ∈ PR and A1 * J , A2 * J . Suppose

A1 ∩A2 ⊆ J . Since J is a strongly irreducible bi-hyperideal of R, we have A1 ⊆ J or A2 ⊆ J , a

contradiction. Hence A1 ∩ A2 * J , which implies that J ∈ EA1∩A2 . Thus EA1 ∩ EA2 ⊆ EA1∩A2 .

Now, if J ∈ EA1∩A2 , then J ∈ PR and A1 ∩ A2 * J . Thus A1 * J and A2 * J . Hence J ∈ EA1

and J ∈ EA2 , which implies that J ∈ EA1 ∩ EA2 . Therefore, we have EA1∩A2 ⊆ EA1 ∩ EA2 . Now,

consider an arbitrary family {Aα : α ∈ Λ} of bi-hyperideals of R. Let {EAα : α ∈ Λ} ⊆ ξ(PR).

Then, we have
∪
α∈Λ

EAα =
∪
α∈Λ

{J ∈ PR : Aα * J} = {J ∈ PR : Aα * J for some α ∈ Λ} = {J ∈

PR : ⟨
∪
Aα⟩ * J} = E∪Aα

, where ⟨
∪
Aα⟩ is a bi-hyperideal of R generated by

∪
Aα and by

the proof of Theorem 4.5,
∪
Aα is a bi-hyperideal of R. Thus we have

∪
α∈Λ

EAα ∈ ξ(PR). Hence

ξ(PR) forms a topology on the set PR and so the proof is completed. �
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Definition 4.9. Let (R,+, ·,≤) be an ordered Krasner hyperring. A non-zero bi-hyperideal A

of R is called a minimal bi-hyperideal of R if there is no non-zero bi-hyperideal B of R such that

B ⊂ A. A bi-hyperideal A of R is said to be maximal if for any proper bi-hyperideal B of R,

A ⊆ B implies that A = B.

Proposition 4.7. Let A be a proper bi-hyperideal of an ordered Krasner hyperring (R,+, ·,≤).

Then, A is contained in a maximal bi-hyperideal of R.

Proof. Let C = {J : J is a proper bi-hyperideal of R and A ⊆ J}. Since A ∈ C, it follows that

C ̸= ∅. Also C is an ordered set by inclusion. Let {Jk : k ∈ Λ} be a totally ordered subset in C.
Consider B =

∪
k∈Λ

Jk. It is easy to see that B is in C. Hence by Zorn’s lemma, C has a maximal

element, say M . Now, let K be a proper bi-hyperideal of R containing M . Then, K contains

A and so it belongs to C. Since M is maximal in C, it follows that K = M . Therefore, M is a

maximal bi-hyperideal of R. �

Theorem 4.7. Let (R,+, ·,≤) ba an ordered Krasner hyperring. If the set of bi-hyperideals of

R is totally ordered under inclusion, then any maximal bi-hyperideal of R is strongly irreducible.

Proof. Let A be a maximal bi-hyperideal of R. Let I and J be bi-hyperideals of R such that

I ∩ J ⊆ A and I * A. Consider B = I ∪ A. We show that B is a bi-hyperideal of R. Let

b1, b2 ∈ B. By the assumption, we have A ⊆ I. So both b1, b2 are inside I. Thus we have

b1 + b2 ⊆ I ⊆ B, −b1 ∈ I ⊆ B and b1 · b2 ∈ I ⊆ B. This implies that b1 + b2 ⊆ B, −b1 ∈ B and

b1 · b2 ∈ B. Therefore, (B,+) is a canonical subhypergroup of (R,+) and B · B ⊆ B. Now, let

b1, b2 ∈ B and r ∈ R. Then b1, b2 ∈ I. Hence b1 · r · b2 ∈ I ⊆ B. This implies that B ·R ·B ⊆ B.

If x ∈ B and y ∈ R such that y ≤ x, then x ∈ I. So we have y ∈ I ⊆ B. This implies that

y ∈ B. Therefore, B = I ∪ A is a bi-hyperideal of R such that A ⊂ I ∪ A, so I ∪ A = R. Thus

we have J = J ∩ R = J ∩ (I ∪ A) = (J ∩ I) ∪ (J ∩ A) ⊆ A. Hence A is a strongly irreducible

bi-hyperideal of R and so the proof is completed. �
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